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J. Phys. A: Math. Gen. 19 (1986) 2841-2854. Printed in Great Britain 

Lattice models of aspects of firn closure: I. Percolation on the 
interstices of the BCC lattice 

I G Enting 
CSIRO Division of Atmospheric Research, Private Bag No 1, Mordialloc, Victoria 3195, 
Australia 

Received 12 July 1985, in final form 30 December 1985 

Abstract. The use of the percolation model to describe the age distribution of air bubbles 
trapped in polar ice is discussed. An earlier Monte Carlo simulation of bubble trapping 
defined as a bond percolation process on the interstices of a BCC lattice is checked against 
series analysis. A description is given of the way in which high-density series for bond 
percolation on bipartite lattices can be obtained by using the definition of percolation as 
the q + 1 limit of the Potts model and applying the method of partial generating functions. 

1. introduction 

Recently, the percolation model from lattice statistics has been used to describe the 
age distribution of air bubbles trapped in polar ice (Enting 1985, Stauffer et a1 1985). 
The determination of the distribution of trapping times is needed if observed concentra- 
tions of minor atmospheric constituents (e.g. COz, CH4) are to be used to reconstruct 
a history of changes in atmospheric composition over the last few centuries. In terms 
of the notation used by Enting (1985) the trapping distribution R(z)  dz is the amount 
of gas trapped in an ice layer during the period z to z + d z  years after the original 
snow was deposited. R(z)  is normalised by loa R(z)  dz = 1 

q (z )=  1; R(z-z’)c(z’) dz’. (2) 

(1) 

so that R(z)  is the trapping rate expressed as a proportion of total gas trapped. From 
the definition of R(z)  it follows that q( z), the concentration of any constituent occurring 
in bubbles in an ice layer that is z years old, is related to c(z’), the atmospheric 
composition z‘ years ago, by 

The static geometric aspects of bubble trapping can be modelled using percolation 
theory by assuming that connecting channels close with a probability that increases 
with the age z of the layer. The proportion of gas that is not trapped is the proportion 
still connected to the atmosphere by open channels. This is identified with the 
proportion of sites connected to an infinite cluster of open channels, i.e. to a cluster 
through which air percolates from the atmosphere. This is P(z) ,  the percolation 
probability expressed in terms of the age z and so the cumulative proportion trapped 
is 1 - P(z)  and the trapping rate R ( z )  is the derivative -P’(z). The relation between 
z, the age of the ice, and the bond closure probabilities must be determined empirically. 
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Two initial studies of bubble trapping used bulk three-dimensional percolation as 
the basic model, thus identifying the percolation transition with the transition from 
firn (i.e. permeable layers of sintered snow grains) to impermeable ice layers. Stauffer 
et  a1 (1985) considered bond percolation on the interstitial sites of a BCC lattice and 
performed Monte Carlo simulations in order to estimate the critical point. Enting 
(1985) invoked universality arguments in order to discuss the dominant singularity 
occurring in equation (2). If a percolation model is used then equation ( 2 )  becomes 

q ( z )  5 - P ’ ( z - z ’ ) c ( z ’ )  dz‘ z 2 z ,  (30 )  51,. 
or 

q ( z ) = - [ :  P ’ ( z - z ’ ) c ( z ’ )  dz‘ z s z,. 

Enting (1985) pointed out that, since P’( z )  is expected to diverge at z, as ( z c -  z)’-’ ,  
the deconvolution involved in solving the integral equation (3a)  should be less poorly 
conditioned than most geochemical inversion problems. 

The use of bulk three-dimensional percolation probabilities to model bubble trap- 
ping is, of course, only an approximation and a number of refinements to the model 
should be investigated further. Many of the refinements involve special problems that 
have been studied individually in the past. Among the aspects of bubble trapping that 
are in need of further study in order to produce a refined model are diffusion effects, 
crossover effects, the effects of the vertical density gradient in the firn and the role of 
critical fluctuations. These matters have been discussed in greater detail by Enting 
(1986). 

The main aim of the present paper is to analyse series expansions for bond 
percolation on the interstices of a BCC lattice as a crosscheck on the Monte Carlo 
analysis presented by Stauffer et a1 (1985). In addition it is pointed out that the most 
appropriate percolation model for bubble trapping is not the conventional bond 
percolation model considered by Stauffer et al but is rather the percolation model 
obtained from the q +  1 limit of the q-state Potts model. 

The layout of the remainder of this paper is as follows. Section 2 describes the 
Potts model formulation of the bond percolation problem and the structure of high- 
field/low-temperature series. Section 3 gives an explicit technique for series derivation 
using partial generating functions. This is a modification of the techniques described 
by Enting (1975) which generalised the so-called ‘code method’ of Sykes et a1 (1965). 
The series analysis is presented in 0 4. Section 5 compares the results of the series 
expansion to the Monte Carlo results of Stauffer er al (1985). 

2. Percolation and the Potts model 

There have been a number of discussions of the representation of bond percolation 
in terms of the Potts model from statistical mechanics (e.g. Fortuin and Kasteleyn 
1972, Wu 1978). The overall result is that the lattice statistics of bond percolation can 
be obtained from the q-state Potts model. The percolation model that is generated in 
this way describes the statistics of clusters of sites that may be connected by randomly 
occurring bonds. The conventional formulation of bond percolation considers the 
statistics of clusters of bonds. The order parameter obtained from the Potts model is 
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a percolation probability which is the probability that a given site is part of an infinite 
cluster, rather than the more common definition that the percolation probability is the 
probability of a given bond being part of an infinite cluster. 

Obviously, since infinite clusters of sites will have an infinite number of bonds (and 
vice versa), both forms of the percolation probability will go to zero at the same p c  
on any given lattice. Universality would indicate that all critical exponents will be the 
same in each case, and the equality of the exponent p has been proved by Blease et 
a1 (1976). 

As well as lending itself readily to the series derivation techniques described below, 
the percolation probability derived from the Potts model is the most natural form to 
use in modelling bubble trapping. In this representation the sites represent cavities in 
which gas can be trapped and the bonds represent the narrow pathways connecting 
these cavities. As the density of the fim increases it is the narrow pathways (bonds) 
that close randomly while the amount of trapped gas is dominated by the number of 
cavities (sites). Thus the statistics of bubble trapping correspond to the statistics of 
number of sites connected by randomly closed bonds as given by the q + 1 limit of 
the Potts model. 

A rigorous justification of the use of the Potts model approach to derive series 
expansions for percolation is a very delicate problem. There are three limits involved: 
the N + CO thermodynamic limit, the q + 1 limit of the Potts model to give percolation 
and the H + 0 limit involved in defining an order parameter. It is well known that the 
N = number of sites + CO and H = ordering field + 0 limits cannot be exchanged without 
changing the results. However, the question of whether the q +  1 limit can be inter- 
changed with the other limits has not, to the author’s knowledge, been fully discussed 
particularly in the context of deriving high-field expansions. 

The Potts model Hamiltonian is written as 

X / k T = - K  S ( C T ~ , C T , ) - L  C 6 ( ~ i , O )  
(U)€€ is V 

(4) 

where vi is a q-state variable with values 0, 1 . . . , q - 1 and 

8(a, b) = 1 i f a = b  ( 5 a )  

= O  otherwise. (5b) 

The first sum in (4) is over the set E of edges of the lattice and the second sum is over 
V, the set of N sites. The Potts model partition function Z is defined by 

Z(q, K ,  L )  = y1 . . . y1 exp(-X/kT). 
u,=o u N = o  

Wu (1978) shows that the percolation probability can be rewritten as 

if Z( q, K ,  L )  is defined for non-integer q in terms of the random-cluster model (Fortuin 
and Kasteleyn 1972) which has a graph generating function Z (  q, K ,  L )  which is equal 
to that defined by equation (6) for integer q. In equation (7)  the bond occurrence 
probability p is given by 

p=1-u=1-exp( -K) .  (8) 
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The Potts model partition function Z and its logarithm have high-field expansion 
in terms of p = exp(-L). The expansion for l n (2 )  has been discussed by Enting 
(1974a, b). The coefficients of f i n  are finite polynomials in U and q, with the maximum 
powers being U"" and q" where v is the lattice coordination number. For the present 
we assume that the general random-cluster model has an expansion with the same 
properties, and if this is so then the small p expansion for the random-cluster model 
can be obtained simply by substituting non-integer q values into the general q expansion 
for the Potts model. (A full proof of the validity of using this assumption would seem 
to require a demonstration that the q + 1 and N + 00 limits can be validly exchanged. 
For finite graphs, the reinterpretation of Potts model expansions as random-cluster 
expansions must be correct since the random-cluster generating function is a finite 
polynomial in p, U ,  q that agrees with the Potts model for all positive integers q.) 

The final points to note are that the high-field expansion is an expansion about 
the fully ordered state which is the sole allowed state of the one-state Potts model, i.e. 
the high-field expansion is an expansion for 2 where 

and, since alar,  = - p  a/ap, 

P ( p )  = 1 -p(a/ap)Z. 

3. Series expansions from partial generating functions 

As indicated in the introduction, the aim of this paper is to study series expansions 
for the percolation probability of the bond percolation model (as derived from the 
Potts model) on the interstitial sites of a BCC lattice. The lattice structure is that of 
the silicon atoms in the ultramarines ( Na4+x(Si24AI,04,)(X2),) (Krebs 1968). The 
lattice is shown in figure 1. It has coordination number v = 4. For the purposes of 
deriving series expansions the most important property is that it is bipartite, dividing 
into two equivalent sublattices, so the techniques developed for the Ising model by 
Sykes er al (1965) and described for the general-q Potts model by Enting (1975) can 
be applied. 

The derivation of the series involves a sequence of steps that is outlined here. 

3.1. The existence of high-3eld expansions for  Z 

As indicated in the previous section, Z ( q ,  K ,  L )  can be expanded in powers of p = 
exp(-L). For the Potts model, this expansion has a graphical representation in terms 
of perturbed sites with the power of p being given by the number of perturbed sites. 

3.2. The low-temperature grouping 

The coefficients of p n  are polynomials in U of degree vn where v is the coordination 
number. In two or more dimensions the lowest power increases with n and so the 
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Figure 1. Ultramarine lattice. The sites are the interstitial sites of a BCC lattice. The lattice 
is cut away along faces of the underlying simple cubic lattice which is included to aid the 
interpretation. The full lines and full circles of the ultramarine lattice lie on the exposed 
cube faces whose boundaries are also full lines. The open circles and broken lines (on 
both cubic and ultramarine lattices) lie behind the exposed cube faces and the dotted lines 
lie in front of the exposed cube faces. 

high-field expansion can be regrouped as a low-temperature expansion. The minimum 
power is given by nv-2emax where emax is the maximum possible number of edges 
that can occur in any graph of n vertices that can be embedded in the lattice. For 
n = 1 ,  2 , .  . . ,12 the minimum powers for the ultramarine lattice are 4 , 6 , 8 ,  8, 10, 12, 12, 
14, 16, 16, 18 and 18 respectively. Examples of graphs that lead to these minimum 
powers are given in figure 2. From this grouping it will be seen that a combination of 

6 

t 

Figure 2. Graphs that define the temperature grouping of the series. For each number of 
sites, n, no other strong subgraph of the ultramarine lattice has more bonds. 
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a full expansion to p7 combined with explicit consideration of a spa11 number of 
graphs for p8  will give series through to ul ' .  

3.3. Connected graph expansions 

The high-field expansions represent perturbations of groups of sites from the zero state 
into some of the other q - 1  states. Thus, for any particular perturbation, ( q - l ) y  
equivalent perturbations can be constructed by applying independent cyclic permuta- 
tions separately to each of the y connected clusters. (For many perturbations there 
are additional equivalent perturbations but these can be obtained by applying additional 
permutations independently of the cyclic permutations and so the combinatorial factors 
have a factor of ( q  - l)".) If the expansion of Z has its terms with factors ( q  - l )y  
(with integer y 2 1) then only those terms with y = 1 (i.e. perturbations of connected 
sites) will contribute to the expansion of d Z / d q  at q = 1. A consequence of this 
requirement is that the coefficients of p" reduce from being polynomials of degree vn 
in U for general q down to being of degree ( v  - l ) n  + 1 for the q + 1 limit. Furthermore 
these polynomials are the appropriate generalisation (for the modified bond percolation 
model) of the perimeter polynomials defined for the more conventional site and bond 
problems by Sykes and Glen (1976) and Sykes et a1 (1981) respectively. The coefficient 
of p will thus have p"-' = (1 - u ) ~ - '  as a factor. This property serves both as a check 
on the derivation of the expansions in powers of U and as a way of deriving low-density 
expansions in powers of p.  

3.4. Integer coeficients f o r  the percolation problem 

For lattices in which all sites are equivalent (and in particular for the ultramarine 
lattice) the percolation probability has an expansion with integer coefficients. To see 
this we note that the standard definition of the percolation probability would be 

p = 1 -E p u ( g ) ( l  - U ) e ( g ) U n v - 2 e ( g l  

g 

where the sum is over all finite graphs g representing clusters of sites containing an 
arbitrarily chosen origin. It should be noted that, unlike many other simpler lattices, 
the expansion for 2 on the ultramarine lattice involves fractional coefficients. 

3.5. Two-jeld expansions 

The method of partial generating functions devised by Sykes er a1 (1965) and extended 
to the general-q Potts model by Enting (1975) applies to lattices which can be divided 
into two equivalent sublattices A and B such that all bonds on the original lattice 
connect A sites to B sites. In such cases, the partition functions are generalised by 
having distinct fields L A  and LB applying on the two sublattices. This leads to a 
high-field expansion of the form 

i ( q , K , ~ A , L * ) = C C p l p . ; ; A m n ( q ,  U). 
m n  

The utility of this approach is that for small m the full sum over n can be performed 
to give 

F m ( p A ,  4, U )  =c I * l A m n ( q ,  U). 
n 
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If the F, are known up to some order M, the symmetry A,, = An, can be used to 
obtain all A,, for m + n 2M + 1 and setting pA = p B  allows Z ( q ,  K ,  L )  to be obtained 
through to I*.',+'. 

The Fm(pA, q, U )  are expressed in terms of the sets of m perturbed sites on the set 
of B sites which is called the shadow lattice. Two shadow lattice sites are connected 
if and only if they have a common neighbour on the A lattice. With this definition of 
connectivity it will be seen that B sites of a graph that is connected on the original 
lattice will be connected on the shadow lattice and so, from Q 3.3, a Z / a q  at q = 1 can 
be calculated from a reduced Fm(pA, q, U )  which only includes contributions from 
connected shadow lattice graphs. Furthermore the graphs will make contributions to 
Z(q, K ,  L )  of the form ( q  - l )d (q ,  U, pA).  Differentiating with respect to q and setting 
q = 1 shows that the corresponding contribution to a z / a q  at q = 1 is d(1, U, pA).  Thus 
for the percolation model q = 1 can be substituted directly into the factors J ;  given by 
Enting (1975). (The one exception is for Fo where there are no B lattice sites to give 
a ( q  - 1 )  factor.) 

3.6. The series expansion 

The final result of this analysis is that we can write 

where the A,,,,, are derived from F, which are formally 

and which can be constructed explicitly as sums over shadow lattice graphs as described 
by Enting (1975). 

Enting gives 

FO=ln[lf(q-l)pAUZ] 

whence Fo = pAuZ.  The higher-order F, are expressed as sums over all connected sets 
of perturbed sites on the shadow lattice 

where the index i denotes a type of perturbed element in cluster g and w( i, g )  is the 
number of times such an element occurs in cluster g. 

From Enting (1975) the various elements and the J ;  for Potts model perturbations 
(evaluated at q = 1) are 

f;= 1 + p u " - ' - p u y - '  

f3= 1 + p u y - 4 - p u y - 2  

f4 = 1 + 2pu"-3 - 2pu 

for each A site neighbouring only one perturbed B site; 

for each A site neighbouring exactly two perturbed B sites in the same perturbed state; 
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for each A site neighbouring two B sites in different perturbed states; 

f5 = 1 + p u “ - 6 -  p u y - 3  

f6= l+pu”-5+pU”-4-2pU”-3  

f7= 1 + 3 p u ~ - 4 - 3 p u y - 3  

for each A site neighbouring three B sites in the same state; 

for each A site neighbouring three B sites, two of which are in the same state; 

for each A site neighbouring three B sites in distinct states. 

the form 
Terms involving the same powers of the 5 can be grouped to give expansions of 

which is denoted 

n 

with n , ,  which is always 0 here, included for consistency with previous descriptions. 
The expansions of SI to 3F3 are given in the appendix, with trailing zeros in the ( ) 
factors truncated. The factor m is included in the definition of the Cn since this gives 
integer coefficients. 

The shadow lattice graphs and their weights (without the factor m) are shown in 
figure 3. The double lines represent bonds between two B sites with two common A 
neighbours while the single lines connect B sites with only one common A neighbour. 
The shaded triangles have an A site which is a common neighbour of the three (B-site) 
vertices of the triangle. 

.:I -- 
1 1 4 I 

4 0 20 4 

Figure 3. Counts for graphs of up to three sites on the shadow (B)  lattice of the ultramarine 
lattice. Single lines connect B sites with one common A neighbour and double lines connect 
B sites with two common A neighbours. The three B sites in the shaded triangle have a 
common A neighbour. 

In order to generate the ‘codes’ in the appendix, the ( q  - 1)” decorations of each 
graph must be considered. As indicated earlier, there are also a number of p8 contribu- 
tions that must be considered in order to obtain the full series to order U”. The relevant 
graphs are shown in figure 4,  together with their counts on the ultramarine lattice. The 
fourth graph contributes to A35 and so its contribution will be obtained correctly from 
F3 but the other three contribute only to A, and so must be considered explicitly. 
The leading contribution (of order q - 1) for each graph is u14p8 and so the graphs 
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combine to contribute 1 4 ~ ' ~ p '  to and - 1 l 2 ~ ' ~ p '  to P. The first and third graphs 
have additional contributions with factors ( q  - 1)( q - 2) corresponding to perturbations 
into two different Potts model states. If the break between the two states occurs across 
the unique cutting line in each graph then the contributions are ( q  - l)(q - 2 ) p ' ~ ' ~  so 
the graphs contribute - 1 O p ' ~ ' ~  to 2 and 8Op'u" to P. All other perturbations of any 
of the three graphs give higher powers of U. 

Combining these corrections with the expansion of the partial generating functions 
from the appendix gives 

P ( p = l - ~ ) = 1 - ~ ~ - 4 ~ ~ + 4 ~ ~ - 2 0 ~ ~ + 3 6 ~ ~ - 1 0 6 ~ ~ ~ + 2 4 4 ~ ~ ~ - 6 4 6 ~ ~ ~  

+ 1 5 7 2 ~ ' ~  - 3 9 7 8 ~ ' ~ + 9 7 0 8 ~ ' ~ .  . .. 
The derivation of the series for P( p )  can be immediately extended to the derivation 

of series for S (  p ) ,  the mean size of finite clusters, since, from Wu (1978), 

S ( p ) = 7 -  lim N- ' l nZ(q ,K ,L)  
aL a2 aq a (  N -  1 q = 1  

The resulting high-density series is 

S (  p = 1 - U )  = u4+ 8u6 - 8w7+62u8 - 1 0 8 ~ ~ + 4 2 6 ~ ' ~ - 9 9 6 ~ ' ' +  3 1 7 0 ~ ' ~  

- 8 0 9 2 ~ ' ~  + 2 3 2 2 2 ~ ' ~ - 6 0 2 0 8 ~ " + .  . .. 
Regrouping the perimeter polynomials (i.e. coefficients of p ")  gives the low-density 
series 

S ( p ) =  1+4p+12p2+36p3+98p4+280p5+764p6+2112p7+. . .. 
The last term has been deduced by exploiting the fact that the low-density expansion 
for P ( p )  must be identically zero. 

4. Series analysis 

The high-density series derived in the previous section are relatively short, extending 
only to uI5. While this is longer than, for example, the three-state square lattice Potts 

03 00- 
8 Count not needed 

Figure 4. Graphs on the ultramarine lattice with eight sites and nine bonds. The first three 
(whose counts are shown) give corrections to the uI4 and U" terms obtained from partial 
generating functions up to F3. The contribution of the fourth graph is included in F3. 
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model series for which the temperature grouping is similar and which was analysed 
by Straley and Fisher (1973), the ultramarine series would be expected to be less 
regular than any corresponding square lattice series. The lattice has six sites per unit 
cell and so relatively high-order perturbations are needed in order to obtain a rep- 
resentative sample of the long range structure of the lattice from which to extract an 
estimate of critical behaviour. 

There are however two properties that do help the analysis. The first is that an 
estimate of the critical exponent is available. The second is that the ‘correction-to- 
scaling’ exponent Al is near 1 (Adler et a1 1983) and so the corrections are very nearly 
analytic. These properties suggest that the best estimates for the critical point will be 
obtained by constructing Pad6 approximants to and looking for the smallest real 
zero of the numerator. 

The exponent p was taken to be 0.454, based on the work of Gaunt and Sykes 
(1983). The results of the Pad6 approximant analysis are shown in table 1. The first 
column gives the order of the approximant that was fitted to P ( u ) ’ ” . ~ ~ ~ .  The second 
column is the smallest positive real zero of the numerator. These values are estimates 
of U,. The final column gives the value of the smallest positive real zero of the 
denominator. It will be seen that the smallest values of the U, estimates are associated 
with an additional pole in the approximant just beyond the physical singularity. The 
third column gives the residue of the approximant at the physical singularity. The 
fourth column gives the smallest negative zero of the numerator. This seems to be a 
well defined singularity (as might be expected given the regular alternation in sign of 
the original series). However the zero is almost always followed closely by a pole 
which suggests that the approximants are attempting to model a singularity that does 
not follow the (U, - U)@ behaviour that was assumed for the physical singularity. 

It will be seen that there are two distinct interpretations concerning the physical 
singularity that could be placed on the results in table 1. The first is that the critical 
behaviour is described by a simple power law and the critical point is U, = 0.61 f 0.01. 
The second interpretation is that the singularity is at U, = 0.580* 0.015 but with singular 
behaviour that is more complicated than a simple power law so that the Pad6 
approximants represent this more complicated behaviour with an additional pole just 
beyond the physical singularity. The significance of this second possibility is that the 
critical probability would then be in agreement with the Monte Carlo estimate given 
by Stauffer et a1 (1985). 

In order to test the sensitivity of these results to the value of p that was chosen, 
the analysis above was repeated using values of p ranging from 0.40-0.48 in steps of 
0.01 in order to cover most of the range of estimates given for various three-dimensional 
percolation problems by Gaunt and Sykes (1983). The behaviour of the physical 
singularity in each case was very regular. For each p value the [ 5 , 5 ]  approximant led 
to a complex pair. The zero of the [7,5] approximant dropped monotonically from 
0.5773 to 0.5721 as p increased from 0.40 to 0.48. The zero of the [8,7] approximant 
increased from 0.5852 ( p  = 0.4) to 0.5864 ( p  = 0.45) and dropped to 0.5865 at p = 0.48. 
For all other approximants the position of the zero increased monotonically, changing 
by up to 0.0107 as p increased from 0.40 to 0.48. Where approximants are shown in 
table 1 as having a pole on the positive axis, this behaviour persisted when p was varied. 

It is therefore apparent that the variability in the estimates of U, arising from 
uncertainties in the value of p are much less than the variability shown in table 1 for 
a single value of p. Analysis of Pad6 approximants to the logarithmic derivative of P 
was also attempted but was unsuccessful because virtually all approximants had a 
complex pair of poles rather than a physical singularity. 
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Table 1. Results of Pad6 approximant analysis. [D, NI denotes the order of the Pad6 
approximant to P( u ) ’ ’ ~  with j3 = 0.454. The zero on the positive real axis is an estimate 
of 1 - p S .  The residues determine the critical amplitude. The zero on the negative real axis 
is the dominant non-physical singularity. The final column shows the pole on the positive 
axis that is closest to the origin, as such poles may distort the estimates of p c .  * denotes 
a pole-zero pair. 

Zero on Zero on Pole on 
[D, NI  positive axis Residue negative axis positive axis 

0.568 
0.576 
0.560 
Complex 
0.596 
0.607 
0.620 
0.611 
0.61 1 
0.6 13 
0.608 
0.575 
0.604 
0.604 
0.606 
0.608 
0.586 

-15.81 
-14.18 
-17.52 
- 

-10.89 
-9.61 
-7.71 
-9.01 
-9.05 
-8.67 
-9.44 

-20.20 
-10.03 
-10.13 

-9.80 
-9.38 

-14.91 

-0.384 
-0.386 
-0.395 
-0.390 
-0.415 
-0.393 
-0.393 
-0.393 
-0.393 
-0.393 
-0.392 
-0.393 
-0.393 
-0.393 
-0.393 

Complex 
-0.393 

0.682 
0.733 
0.653 
None 
None 
None 
None 
None 
None 
None 
None 
0.620 
None 
2.182 
None 
0.114* 
0.664 

The analysis of P ( p )  was supplemented by an analysis of the series for the mean 
cluster size S ( p ) .  The procedure that was used was to take the exponent estimate 
y’= 1.73 obtained by Gaunt and Sykes (1983) and construct Pad6 approximants. The 
positions of the poles are listed in table 2 as estimates of 1 -pc .  This analysis procedure 
did not produce any regular estimates of the singularity on the negative real axis and 
the poles representing the physical singularity were not associated with additional 
close poles or zeros. It will be seen that estimates of U ,  are larger than the estimates 
obtained from the P (  p) series and so the discrepancy with the Monte Carlo estimates 
is greater. 

Table 2. Results of Pad6 approximant analysis. [D, NI denotes the order of the Pad6 
approximant to [u-~S(U)]’”’ with y ’ =  1.73. The pole on the real axis gives an estimate 
of 1 - pE.  The residues determine the critical amplitude. 

Pole on 
ID, NI  positive axis Residue 

[4,41 0.636 
[4,51 0.638 
[5,41 0.638 
[4,61 0.637 
~ 5 1  0.637 
1641  0.637 
[5,61 0.638 
[6, SI 0.638 

-0.543 
-0.549 
-0.549 
-0.547 
-0.547 
-0.547 
-0.549 
-0.549 
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For completeness the short low-density series for the mean cluster size have been 
analysed using the ratio method. The results are given in table 3.  The use of ratios 
of successive terms gives a regular oscillation similar to the behaviour of Ising model 
susceptibilities series in which there is an antiferromagnetic singularity. This oscillation 

Table 3. Ratio method analysis of the low-density expansion of the mean cluster size, 
S( p )  = P s , p ” .  The last two columns are estimates of p c ,  assuming that the critical exponent 
is y =  1.73. 

n S“ fn=1+0.73/n r;L=s,-,/s. p ; ‘ = G / s ,  f n / r , ,  L I P “  

0 1 
1 4 
2 12 
3 36 
4 98 
5 280 
6 164 
I 2112 

- 
1.7300 
1.3650 
1.2433 
1.1825 
1.1460 
1.1217 
1.1043 

- 
0.2500 
0.3333 
0.3333 
0.3675 
0.3500 
0.3665 
0.3617 

- 
- 
0.2886 
0.3333 
0.3499 
0.3586 
0.3582 
0.3641 

- 
0.4325 
0.4550 
0.4144 
0.4344 
0.401 1 
0.41 11 
0.3995 

- 
0.3939 
0.4144 
0.4138 
0.41 10 
0.4018 
0.4021 

has been reduced by taking the square roots of ratios of every second term. If the 
critical exponent is assumed to be y = 1.73 as estimated by Gaunt and Sykes (1983) it 
will be seen that the ratio method gives estimates of p c  that are smaller than the estimate 
of p,=O.42 given by Stauffer et al (1985) and are in reasonable agreement with the 
Pad6 approximant analysis in table 1. Using y values of 1.64 and 1.74 to cover the 
range of values found by Gaunt and Sykes (1983) for the simple cubic bond problem 
makes only small changes to the ratio method estimates which remain significantly 
smaller than the estimates by Stauffer er al. 

5. Discussion 

There are two main aspects of this paper. The first is the presentation of a technique 
for deriving series expansions for bond percolation by using partial generating func- 
tions. (The results of an earlier unpublished application (by the present author) of 
this technique in the derivation of series along the ‘critical isotherm’ of the square 
lattice bond percolation model was quoted by Gaunt and Sykes (1976).) The relative 
efficiency of such techniques compared with direct graph counting will depend on the 
particular problem and to some extent the number of terms that are required. For the 
ultramarine lattice, the partial generating function approach was very convenient at 
low orders because the small number of shadow lattice graphs involved can be counted 
and decorated by hand. At somewhat higher orders where computer enumeration of 
the graphs becomes necessary it may be most convenient to enumerate the graphs 
directly for the ultramarine lattice and avoid the need for decorations and algebraic 
expansions. However, as longer and longer series are sought it is probable that a second 
‘crossover’ will occur where the partial generating function techniques again become 
the more efficient approach. The number of shadow lattice graphs should grow much 
less quickly than the number of graphs on the original lattice and the decorations and 
algebraic expansions required by the method of partial generating functions need be 
performed only once for each topological class. 
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The second aspect of this paper concerns the analysis of percolation on the 
ultramarine lattice. The discussion by Gaunt and Sykes (1983) indicates the extreme 
difficulty that has been encountered in the analysis of percolation problems. The 
ultramarine lattice might be expected to be particularly difficult to analyse because it 
has six sites per unit cell and so relatively long series may be required in order to 
adequately sample the lattice structure. The nature of the difficulty encountered by 
Gaunt and Sykes is unclear, particularly since the correction-to-scaling exponent is 
believed to be close to one and so the corrections should lead to functions that can 
be represented closely by Pad6 approximants. The discrepancies between U, estimates 
obtained from analysing P ( p )  and analysing S ( p )  shows that similar problems are 
occurring for the ultramarine series. In view of the serious difficulties encountered by 
Gaunt and Sykes (1983) in analysing high-density series for the mean cluster size, the 
results in table 2 must be treated with considerable caution. The U, estimates in table 
1 should be regarded as more reliable, especially since they are supported by the ratio 
method analysis shown in table 3. 

Monte Carlo techniques have been used to study a number of percolation models 
and very precise estimates of the critical probability have been obtained by using 
finite-size scaling theory to interpret the results (Sur et a1 1976, Heerman and Stauffer 
1981). Such studies have used of the order of lo6 sites. However in the study of firn 
closure by Stauffer et a1 (1985) up to 8748 bonds were used and there was no indication 
of whether finite-size scaling was used to extrapolate the results of the simulations. It 
is therefore quite possible that the agreement between their estimate of pc = 0.42 and 
the Pad6 approximants with the zero-pole structure on the real axis is a coincidence 
and of no special significance. On this assumption, the estimate of p,=0.39*0.01 is 
proposed as appropriate for the ultramarine lattice. 
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Appendix. Partial generating functions for bond percolation on the ultramarine lattice 

F, = 1(0,4) 

2F2 = 2(0,4,2) - 2(0,4,0,2) + 8(0,6, 1) - 8(0,6,0,1) 

3F3=3(0,4,4)-6(0,4,  2,2)+3(0,4,0,4)+28(0,6,3)-24(0,6,2, 1)-36(0,6, 1,2) 

+32(0,6,0,3)+ 12(0,7, 1,0, 1) - 12(0,7, 1,0,0,  1)-24(0,7,0, 1,0, 1) 

+24(0,7,0, 1,0,0,  1)+60(0,8,2)-120(0,8, 1, 1)+60(0,8,0,2). 
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